Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12361, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858986

RESUMO

Glaucoma is an eye condition that leads to loss of vision and blindness if not diagnosed in time. Diagnosis requires human experts to estimate in a limited time subtle changes in the shape of the optic disc from retinal fundus images. Deep learning methods have been satisfactory in classifying and segmenting diseases in retinal fundus images, assisting in analyzing the increasing amount of images. Model training requires extensive annotations to achieve successful generalization, which can be highly problematic given the costly expert annotations. This work aims at designing and training a novel multi-task deep learning model that leverages the similarities of related eye-fundus tasks and measurements used in glaucoma diagnosis. The model simultaneously learns different segmentation and classification tasks, thus benefiting from their similarity. The evaluation of the method in a retinal fundus glaucoma challenge dataset, including 1200 retinal fundus images from different cameras and medical centers, obtained a [Formula: see text] AUC performance compared to an [Formula: see text] obtained by the same backbone network trained to detect glaucoma. Our approach outperforms other multi-task learning models, and its performance pairs with trained experts using [Formula: see text] times fewer parameters than training each task separately. The data and the code for reproducing our results are publicly available.


Assuntos
Aprendizado Profundo , Glaucoma , Disco Óptico , Fundo de Olho , Glaucoma/diagnóstico por imagem , Humanos , Disco Óptico/diagnóstico por imagem
2.
J Acoust Soc Am ; 140(3): 1663, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27914439

RESUMO

A methodology to design broadband time-domain impedance boundary conditions (TDIBCs) from the analysis of acoustical models is presented. The derived TDIBCs are recast exclusively as first-order differential equations, well-suited for high-order numerical simulations. Broadband approximations are yielded from an elementary linear least squares optimization that is, for most models, independent of the absorbing material geometry. This methodology relies on a mathematical technique referred to as the oscillatory-diffusive (or poles and cuts) representation, and is applied to a wide range of acoustical models, drawn from duct acoustics and outdoor sound propagation, which covers perforates, semi-infinite ground layers, as well as cavities filled with a porous medium. It is shown that each of these impedance models leads to a different TDIBC. Comparison with existing numerical models, such as multi-pole or extended Helmholtz resonator, provides insights into their suitability. Additionally, the broadly-applicable fractional polynomial impedance models are analyzed using fractional calculus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...